Abstract

AbstractWe use density functional theory‐based molecular dynamics simulations to predict the partitioning behavior of helium (He) between coexisting metal and silicate melts at conditions of the magma ocean and the current core–mantle boundary. Helium strongly favors silicate over metal at low pressures and temperatures (10 GPa and 3,000 K) but it becomes approximately two orders of magnitude more compatible with metal at greater pressures and temperatures (50 GPa and 4,000 K) expected in a deep magma ocean. We further examine He partitioning behavior for varying metal compositions (pure Fe, Fe‐S, and Fe‐O alloys) and find that oxygen enhances He incorporation into the core by one to two orders of magnitude. The He elemental and isotopic compositions of the Earth's core are estimated to be ∼4.2 ng/g and ∼140 atmospheric 3He/4He ratio assuming the core containing some amounts of oxygen as required to explain the core density deficit. Our results suggest that the core may play a key role as a reservoir for the He signature recorded in ocean island basalts with distinctively high 3He/4He ratios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.