Abstract

In the solid state diallylamine forms supramolecular helices with four molecules per pitch that are held together by hydrogen bonding. The helical structure is the result of competing length scales at which hydrogen bonding and second-neighbour Van-der-Waals interactions occur. The structure features two crystallographically independent helices and four unique molecules in the asymmetric unit (Z′ = 4). The high Z′ value is partly a consequence of the centrosymmetric pseudo-hexagonal packing of helical columns, which is incompatible with helical spacegroup symmetries.Graphic

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.