Abstract

Despite the development of therapeutic agents that selectively target cancer cells, relapse driven by acquired drug resistance and resulting treatment failure remains a significant issue. The highly conserved Hedgehog (HH) signaling pathway performs multiple roles in both development and tissue homeostasis, and its aberrant regulation is known to drive the pathogenesis of numerous human malignancies. However, the role of HH signaling in mediating disease progression and drug resistance remains unclear. This is especially true for myeloid malignancies. The HH pathway, and in particular the protein Smoothened (SMO), has been shown to be essential for regulating stem cell fate in chronic myeloid leukemia (CML). Evidence suggests that HH pathway activity is critical for maintaining the drug-resistant properties and survival of CML leukemic stem cells (LSCs), and that dual inhibition of BCR-ABL1 and SMO may comprise an effective therapeutic strategy for the eradication of these cells in patients. This review will explore the evolutionary origins of HH signaling, highlighting its roles in development and disease, which are mediated by canonical and non-canonical HH signaling. Development of small molecule inhibitors of HH signaling and clinical trials using these inhibitors as therapeutic agents in cancer and their potential resistance mechanisms, are also discussed, with a focus on CML.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.