Abstract

The study of heat transfer phenomena in diesel engines is a very complex task considering the number of engine components such as intake and exhaust manifolds, lubricant oil and coolant subsystems, the different heat transfer mechanisms (conduction, convection, and radiation). This paper presents simulation results using a dual-zone model associated to GT-Suite simulation software for the calculation of convective heat transfer from gas to the cylinder wall, radiation heat transfer, gas pressure and temperature for low, partial and full load engine as a function of crank angle for a single-cylinder diesel engine. In this present article, a numerical simulation model was created to foresee the main combustion characteristics, and the simulated results were approved through the reference experiment data. Simulation results showed that any increase in the mass of fuel injected into the combustion chamber would generate a significant increase in the level of pressure and temperature of the combustion gases in the cylinder. This means that despite the improved power performance, excessive fuel consumption would have a negative effect on the thermal behavior and consequently on the life of the engine. The essential objective of any combustion engine development is to reduce fuel consumption while maintaining or improving the engine's power output.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.