Abstract
SummaryCrop yield has been greatly enhanced during the last century. However, most elite cultivars are adapted to temperate climates and are not well suited to more stressful conditions. In the context of climate change, stress resistance is a major concern. To overcome these difficulties, scientists may help breeders by providing genetic markers associated with stress resistance. However, multistress resistance cannot be obtained from the simple addition of single stress resistance traits. In the field, stresses are unpredictable and several may occur at once. Consequently, the use of single stress resistance traits is often inadequate. Although it has been historically linked with the heat stress response, the heat‐shock protein (HSP)/chaperone network is a major component of multiple stress responses. Among the HSP/chaperone ‘client proteins’, many are primary metabolism enzymes and signal transduction components with essential roles for the proper functioning of a cell. HSPs/chaperones are controlled by the action of diverse heat‐shock factors, which are recruited under stress conditions. In this review, we give an overview of the regulation of the HSP/chaperone network with a focus on Arabidopsis thaliana. We illustrate the role of HSPs/chaperones in regulating diverse signalling pathways and discuss several basic principles that should be considered for engineering multiple stress resistance in crops through the HSP/chaperone network.
Highlights
Stresses are defined as environmental constraints that differ from optimal conditions, impeding growth and development
Multi-stress resistance cannot be obtained from the simple addition of single stress resistance traits
The use of single stress resistance traits is often inadequate. It has been historically linked with the heat stress response, the heat shock protein (HSP)/chaperone network is a major component of multiple stress responses
Summary
This is the peer reviewed version of the following article: Jacob, P., Hirt, H. and Bendahmane, A. (2016), The heat shock protein/chaperone network and multiple stress resistance. Item License Link to Item http://creativecommons.org/licenses/by/4.0/ http://hdl.handle.net/10754/622742
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.