Abstract

We introduce the notion of strip complex. A strip complex is a special type of complex obtained by gluing “strips” along their natural boundaries according to a given graph structure. The most familiar example is the one-dimensional complex classically associated with a graph, in which case the strips are simply copies of the unit interval (our setup actually allows for variable edge length). A leading key example is treebolic space, a geometric object studied in a number of recent articles, which arises as a horocyclic product of a metric tree with the hyperbolic plane. In this case, the graph is a regular tree, the strips are [0,1]×R, and each strip is equipped with the hyperbolic geometry of a specific strip in upper half plane. We consider natural families of Dirichlet forms on a general strip complex and show that the associated heat kernels and harmonic functions have very strong smoothness properties. We study questions such as essential self-adjointness of the underlying differential operator acting on a suitable space of smooth functions satisfying a Kirchhoff type condition at points where the strip complex bifurcates. Compatibility with projections that arise from proper group actions is also considered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.