Abstract

The work is devoted to the study of the intensity of heat transfer in a supersonic combustion chamber at a Mach number of 4 under conditions of ignition and transition to intense combustion, including the transition to choking the channel. The experiments were carried out on a combustion chamber model in the connected pipeline mode with flow parameters in the channel close to flight conditions at Mach numbers 6–8. The experimental model is a rectangular channel with a flame holder in the form of backward facing step (BFS). Fuel injection was carried out in front of BFS on the top and bottom walls of the model through 8 circular holes, which were situated under the angles of 45° or 90°. It has been revealed that the choice of the fuel injection scheme leads to an increase in the level and a change in the distribution of the heat flux along the length of the combustion chamber. A decrease in the angle of hydrogen injection makes it possible to significantly reduce the heat flux into the wall of the combustion chamber, while choking the channel is accompanied by a twofold increase in the heat flux.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call