Abstract

A major factor influencing life-history strategies of endotherms is body size. Larger endotherms live longer, develop more slowly, breed later and less frequently, and have fewer offspring per attempt at breeding. The classical evolutionary explanation for this pattern is that smaller animals experience greater extrinsic mortality, which favors early reproduction at high intensity. This leads to a short lifespan and early senescence by three suggested mechanisms. First, detrimental late-acting mutations cannot be removed because of the low force of selection upon older animals (mutation accumulation). Second, genes that promote early reproduction will be favored in small animals, even if they have later detrimental effects (antagonistic pleiotropy). Third, small animals may be forced to reduce their investment in longevity assurance mechanisms (LAMs) in favor of investment in reproduction (the disposable soma theory, DST). The DST hinges on three premises: that LAMs exist, that such LAMs are energetically expensive and that the supply of energy is limited. By contrast, the heat dissipation limit (HDL) theory provides a different conceptual perspective on the evolution of life histories in relation to body size. We suggest that rather than being limited, energy supplies in the environment are often unlimited, particularly when animals are breeding, and that animals are instead constrained by their maximum capacity to dissipate body heat, generated as a by-product of their metabolism. Because heat loss is fundamentally a surface-based phenomenon, the low surface-to-volume ratio of larger animals generates significant problems for dissipating the body heat associated with reproductive effort, which then limits their current reproductive investment. We suggest that this is the primary reason why fecundity declines as animal size increases. Because large animals are constrained by their capacity for heat dissipation, they have low reproductive rates. Consequently, only those large animals living in habitats with low extrinsic mortality could survive leading to the familiar patterns of life-history trade-offs and their links to extrinsic mortality rates. The HDL theory provides a novel mechanism underpinning the evolution of life history and ageing in endotherms, and makes a number of testable predictions that directly contrast with the predictions arising from the DST.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.