Abstract

Abstract The heat budget of a model that realistically simulate the 1982–83 El Nino indicates that the enormous changes in the winds during that event failed to disrupt the usual seasonal variations in meridional heat transport. Cross-equatorial transport towards the winter hemisphere continued as in a regular seasonal cycle. The key factor was the continued seasonal migrations of the ITCZ during El Nino. In early 1983 the ITCZ strayed farther south than usual and remained near the equator longer than usual thus causing an increase in the northward heat transport. This, together with an increase in the evaporative heat loss because of higher sea surface temperature, resulted in a large loss of heat from the band of latitudes approximately 12°N–12°S during El Nino.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.