Abstract

Abstract The thermodynamic development of the Western Hemisphere warm pool and its four geographic subregions are analyzed. The subregional warm pools of the eastern North Pacific and equatorial Atlantic are best developed in the boreal spring, while in the Gulf of Mexico and Caribbean, the highest temperatures prevail during the early and late summer, respectively. For the defining isotherms chosen (≥27.5°, ≥28.0°, ≥28.5°C) the warm pool depths are similar to the mixed-layer depth (20–40 m) but are considerably less than the Indo–Pacific warm pool depth (50–60 m). The heat balance of the WHWP subregions is examined through two successive types of analysis: first by considering a changing volume (“bubble”) bounded by constant temperature wherein advective fluxes disappear and diffusive fluxes can be estimated as a residual, and second by considering a slab layer of constant dimensions with the bubble diffusion estimates as an additional input and the advective heat flux divergence as a residual output. From this sequential procedure it is possible to disqualify as being physically inconsistent four of seven surface heat flux climatologies: the NCEP–NCAR reanalysis (NCEP1) and the ECMWF 15-yr global reanalysis (ERA-15) because they yield a nonphysical diffusion of heat into the warm pools from their cooler surroundings, and the unconstrained da Silva and Southampton datasets because their estimated diffusion rates are inconsistent with the smaller rates of the better understood Indo–Pacific warm pool when the bubble analysis is applied to both regions. The remaining surface flux datasets of da Silva and Southampton (constrained) and Oberhuber have a much narrower range of slab surface warming (+25 ± 5 W m−2) associated with bubble residual estimates of total diffusion of –5 to –20 W m−2 (±5 W m−2) and total advective heat flux divergence of –2 to –14 W m−2 (±5 W m−2). The latter are independently confirmed by direct estimates using wind stress data and drifters for the Gulf of Mexico and eastern North Pacific subregions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call