Abstract

BackgroundThe understanding of concerted movements and its underlying biomechanics is often complex and elusive. Functional principles and hypothetical functions of these complex movements can provide a solid basis for biomechanical experiments and modelling. Here a description of the cephalic anatomy of Pyrrhosoma nymphula (Zygoptera, Coenagrionidae) focusing on functional aspects of the mouthparts using micro computed tomography (μCT) is presented.ResultsWe compared six different instars of the damselfly P. nymphula as well as one instar of the dragonfly Aeshna cyanea and Epiophlebia superstes each. In total 42 head muscles were described with only minor differences of the attachment points between the examined species and the absence of antennal muscle M. scapopedicellaris medialis (0an7) in Epiophlebia as a probable apomorphy of this group. Furthermore, the ontogenetic differences between the six larval instars are minor; the only considerable finding is the change of M. submentopraementalis (0la8), which is dichotomous in the early instars (I1,I2 and I3) with a second point of origin at the postero-lateral base of the submentum. This dichotomy is not present in any of the older instars studied (I6, middle-late and pen-ultimate).ConclusionHowever, the main focus of the study herein, is to use these detailed morphological descriptions as basis for hypothetic functional models of the odonatan mouthparts. We present blueprint like description of the mouthparts and their musculature, highlighting the caused direction of motion for every single muscle. This data will help to elucidate the complex concerted movements of the mouthparts and will contribute to the understanding of its biomechanics not in Odonata only.

Highlights

  • The understanding of concerted movements and its underlying biomechanics is often complex and elusive

  • We describe the cephalic anatomy of Pyrrhosoma nymphula (Zygoptera, Coenagrionidae) with a focus on detailed 3D description of the mouthpart musculature and its potential function in the feeding process

  • The ocelli are barely discernable in SEM images, but they are present as the tomography data show

Read more

Summary

Introduction

The understanding of concerted movements and its underlying biomechanics is often complex and elusive. The feeding process usually requires a complex interaction of several specially shaped mouthpart elements – labrum, mandibles, maxillae and labium - moved in a concerted action by muscles. Odonata larvae shows striking differences in their mouthpart organisation compared to adults and differ in details of their feeding mode. The labium of Odonata larvae shows the most drastic differences compared to that of adults. The mandibles and maxillae, show only minor differences compared to the adults. Some of these differences in the outer anatomy are reflected in the muscle configuration [7,8,9]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call