Abstract

We find a trend between the mid-infrared HCN/H2O flux ratio and submillimeter disk mass among T Tauri stars in Taurus. While it may seem puzzling that the molecular emission properties of the inner disk (< few AU) are related to the properties of the outer disk (beyond ~20 AU) probed by the submillimeter continuum, an interesting possible interpretation is that the trend is a result of planetesimal and protoplanet formation. Because objects this large are decoupled from the accretion flow, when they form, they can lock up water (and oxygen) beyond the snow line, thereby enhancing the C/O ratio in the inner disk and altering the molecular abundances there. We discuss the assumptions that underlie this interpretation, a possible alternative explanation, and related open questions that motivate future work. Whatever its origin, understanding the meaning of the relation between the HCN/H2O ratio and disk mass is of interest as trends like this among T Tauri disk properties are relatively rare.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.