Abstract

Within the framework of string field theory the intrinsic Hausdorff dimension d h of the ensemble of surfaces in two-dimensional quantum gravity has recently been claimed to be 2 m for the class of unitary minimal models ( p = m+1, q = m). This contradicts recent results from numerical simulations, which consistently find d h ≈ 4 in the cases m = 2, 3, 5 and ∞. The string field calculations rely on identifying the scaling behavior of geodesic distance and area with respect to a common length scale l. This length scale is introduced by formulating the models on a disk with fixed boundary length l. In this paper we study the relationship between the mean area and the boundary length for pure gravity and the Ising model coupled to gravity. We discuss how this relationship is modified by relevant perturbations in the Ising model. We discuss how this leads to a modified value for the Hausdorff dimension.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.