Abstract
The new Bouguer anomaly map of the Harz Mountains based on 60,000 gravity measurements is presented. The interpretation is done by three dimensional (3-D) gravity modelling, mostly concentrating on the granitic intrusions. The Brocken Granite is modelled as a flattish body with maximum thickness of 2.5 km. The Ramberg Granite is up to 8.5 km thick with a northsouth extent of 35 km. The present mass distribution is an important boundary condition for geodynamic investigations using the finite-element method (FEM). It can be shown that the Harz Mountains are not isostatically compensated. Further calculations deal with the Central European Variscan Belt and reveal a horizontal shortening of 600 m for the Harz Mountains. Considering the Harz Mountains as a wrench-fault-system by taking into account an east-west shortening of 1 km results in a calculated uplift of 220 m which is much less than the vertical displacement at the northern boundary fault zone estimated from gravity and seismic studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.