Abstract

The heterogeneous autoregressive (HAR) models are used in modeling high frequency multipower realized volatility of the S&P 500 index. Extended from the standard realized volatility, the multipower realized volatility representations have the advantage of handling the possible abrupt jumps by smoothing the consecutive volatility. In order to accommodate clustering volatility and asymmetric of multipower realized volatility, the HAR model is extended by the threshold autoregressive conditional heteroscedastic (GJR-GARCH) component. In addition, the innovations of the multipower realized volatility are characterized by the skewed student-t distributions. The extended model provides the best performing in-sample and out-of-sample forecast evaluations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.