Abstract

We examine the stability of the restricted Hartree-Fock (RHF) wave function for F2 in the vicinity of the equilibrium internuclear distance (R=R e ) and the shape of the unrestricted Hartree-Fock (UHF) potential energy curve for the same system. The results depend on the basis set: With a split valence plus polarization basis, 6-31G(d), the RHF wave function is unstable at R e , and the UHF potential curve is purely dissociative. When the basis is extended to 6-311+G(3d) or 6-311+G(3df), the RHF wave function becomes stable, and the UHF potential curve acquires a local maximum for R slightly (∼0.02 a) greater than R e . The local maximum, however, is only 0.1 kcal/mol higher than the local minimum at R=R e .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.