Abstract

When the spin Hamiltonian is a linear function of the magnetic field intensity the resonance fields can be determined, in principle, by an eigenfield equation. In this report, we show a new technical approach to the resonance field problem where the eigenfield equation leads to a dynamic equation or, more specifically, to a first order differential equation of a variable L( x), where x is associated with the magnetic field h. Such differential equation has the property that: its stationary solution is the eigenfield equation and the spectral information contained in L( x) is directly related to the resonance spectrum. Such procedure, known as the “harmonic inversion problem” (HIP), can be solved by the “filter diagonalization method” (FDM) providing sufficient precision and resolution for the spectral analysis of the dynamic signals. Some examples are shown where the resonance fields are precisely determined in a single procedure, without the need to solve eigenvalue equations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.