Abstract

It is becoming increasingly clear that large but rare fluctuations of the primordial curvature field, controlled by the tail of its probability distribution, could have dramatic effects on the current structure of the universe — e.g. via primordial black-holes. However, the use of standard perturbation theory to study the evolution of fluctuations during inflation fails in providing a reliable description of how non-linear interactions induce non-Gaussian tails. Here, we use the stochastic inflation formalism to study the non-perturbative effects from multi-field fluctuations on the statistical properties of the primordial curvature field. Starting from the effective action describing multi-field fluctuations, we compute the joint probability density function and show that enhanced non-Gaussian tails are a generic feature of slow-roll inflation with additional degrees of freedom.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.