Abstract

This paper compares the Hamiltonian approach to systems with nonholonomic constraints (see [31, 2, 4, 29] and references therein) with the Lagrangian approach (see [16, 27, 9]). There are many differences in the approaches and each has its own advantages; some structures have been discovered on one side and their analogues on the other side are interesting to clarify. For example, the momentum equation and the reconstruction equation were first found on the Lagrangian side and are useful for the control theory of these systems, while the failure of the reduced two-form to be closed (i.e., the failure of the Poisson bracket to satisfy the Jacobi identity) was first noticed on the Hamiltonian side. Clarifying the relation between these approaches is important for the future development of the control theory and stability and bifurcation theory for such systems. In addition to this work, we treat, in this unified framework, a simplified model of the bicycle (see [12, 13]), which is an important underactuated (nonminimum phase) control system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call