Abstract

We perform collisionless N-body simulations of 1:1 galaxy mergers, using models which include a galaxy halo, disc and bulge, focusing on the behaviour of the halo component. The galaxy models are constructed without recourse to a Maxwellian approximation. We investigate the effect of varying the galaxies’ orientation, their mutual orbit and the initial velocity anisotropy or cusp strength of the haloes upon the remnant halo density profiles and shape, as well as on the kinematics. We observe that the halo density profile (determined as a spherical average, an approximation we find appropriate) is exceptionally robust in mergers, and that the velocity anisotropy of our remnant haloes is nearly independent of the orbits or initial anisotropy of the haloes. The remnants follow the halo anisotropy ‐ local density slope (β‐γ ) relation suggested by Hansen & Moore in the inner parts of the halo, but β is systematically lower than this relation predicts in the outer parts. Remnant halo axis ratios are strongly dependent on the initial parameters of the haloes and on their orbits. We also find that the remnant haloes are significantly less spherical than those described in studies of simulations which include gas cooling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.