Abstract
We present imaging and spectroscopy of NGC 40 acquired using the Spitzer Space Telescope (Spitzer), and the Infrared Space observatory (ISO). These are used to investigate the nature of emission from the central nebular shell, from the nebular halo, and from the associated circumnebular rings. It is pointed out that a variety of mechanisms may contribute to the mid-infrared (MIR) fluxes, and there is evidence for a cool dust continuum, strong ionic transitions, and appreciable emission by polycyclic aromatic hydrocarbons (PAHs). Prior observations at shorter wavelengths also indicate the presence of warmer grains, and the possible contribution of H2 transitions. It is suggested that an apparent jet-like structure to the NE of the halo represents one of the many emission spokes that permeate the shell. The spokes are likely to be caused by the percolation of UV photons through a clumpy interior shell, whilst the jet-like feature is enhanced due to locally elevated electron densities; a result of interaction between NGC 40 and the interstellar medium. It is finally noted that the presence of the PAH, 21 microns and 30 microns spectral features testifies to appreciable C/O ratios within the main nebular shell. Such a result is consistent with abundance determinations using collisionally excited lines, but not with those determined using optical recombination lines
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.