Abstract

We propose field theories for the bulk and edge of a quantum Hall state in the universality class of the Haldane-Rezayi wavefunction. The bulk theory is associated with the c = −2 conformal field theory. The topological properties of the state, such as the quasiparticle braiding statistics and ground state degeneracy on a torus, may be deduced from this conformal field theory. The 10-fold degeneracy on a torus is explained by the existence of a logarithmic operator in the c = −2 theory; this operator corresponds to a novel bulk excitation in the quantum Hall state. We argue that the edge theory is the c = 1 chiral Dirac fermion, which is related in a simple way to the c = −2 theory of the bulk. This theory is reformulated as a truncated version of a doublet of Dirac fermions in which the SU(2) symmetry - which corresponds to the spin-rotational symmetry of the quantum Hall system - is manifest and non-local. We make predictions for the current-voltage characteristics for transport through point contacts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call