Abstract
The hair cycle is an extraordinarily complex process relying on spatially and temporally coordinated integration of intercellular signaling, cell division and death, cell migration, and gene expression. The hairless gene (hr) is expressed with hair-cycle-dependent kinetics, and pathogenic mutations in hr are responsible for the hairless and rhino phenotypes in mice and atrichia with papular lesions in humans. In addition to its expression in the skin and hair follicle, hr is also highly expressed in the brain, yet the factors governing its differential cell-type-specific expression have not yet been defined. A thyroid hormone responsive element was previously identified in the rat hr promoter which confers thyroid hormone (T3) responsiveness to heterologous promoter constructs; however, prior studies have not focused on the hr promoter itself. The hairless promoter was cloned, and it is shown that the hr promoter is transactivated by T3 in neuroblastoma cells but not in keratinocytes. Therefore, while T3 has a significant role in the regulation of neuronal expression of hairless, its upregulation in keratinocytes is T3 independent. Furthermore, hr is subject to cell-type-specific negative autoregulation, inhibiting the activity of its own promoter in keratinocytes but not neuroblastoma cells. These findings illustrate a molecular distinction between the regulation of hr expression in defined cell populations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.