Abstract
Cytolethal distending toxins (CDTs) block proliferation of mammalian cells by activating DNA damage-induced checkpoint responses. We demonstrate that the Haemophilus ducreyi CDT (HdCDT) induces phosphorylation of the histone H2AX as early as 1 h after intoxication and re-localization of the DNA repair complex Mre11 in HeLa cells with kinetics similar to those observed upon ionizing radiation. Early phosphorylation of H2AX was dependent on a functional Ataxia Telangiectasia mutated (ATM) kinase. Microinjection of a His-tagged HdCdtB subunit, homologous to the mammalian DNase I, was sufficient to induce re-localization of the Mre11 complex 1 h post treatment. However, the enzymatic potency was much lower than that exerted by bovine DNase I, which caused marked chromatin changes at 106 times lower concentrations than HdCdtB. H2AX phosphorylation and Mre11 re-localization were induced also in HdCDT-treated, non-proliferating dendritic cells (DCs) in a differentiation dependent manner, and resulted in cell death. The data highlight several novel aspects of CDTs biology. We demonstrate that the toxin activates DNA damage-associated molecules in an ATM-dependent manner, both in proliferating and non-proliferating cells, acting as other DNA damaging agents. Induction of apoptotic death of immature DCs by HdCDT may represent a previously unknown mechanism of immune evasion by CDT-producing microbes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.