Abstract

The Habitable-Exoplanet Imaging Mission (HabEx) is a candidate flagship mission being studied by NASA and the astrophysics community in preparation of the 2020 Decadal Survey. The HabEx mission concept is a large (~4 to 6.5m) diffraction-limited optical space telescope, providing unprecedented resolution and contrast in the optical, with extensions into the near UV and near infrared domains. The primary goal of HabEx is to answer fundamental questions in exoplanet science, searching for and characterizing potentially habitable worlds, providing the first complete “family portraits” of planets around our nearest Sun-like neighbors and placing the solar system in the context of a diverse set of exoplanets. At the same time, HabEx will enable a broad range of Galactic, extragalactic, and solar system astrophysics, from resolved stellar population studies that inform the stellar formation history of nearby galaxies, to characterizing the life cycle of baryons as they flow in and out of galaxies, to detailed studies of bodies in our own solar system. We report here on our team’s efforts in defining a scientifically compelling HabEx mission that is technologically executable, affordable within NASA’s expected budgetary envelope, and timely for the next decade. In particular, we present architectures trade study results, quantify technical requirements and predict scientific yield for a small number of design reference missions, all with broad capabilities in both exoplanet science and cosmic origins science. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call