Abstract
In this paper we consider the Haar wavelet on weighted Herz spaces. Our weight class, whose name is A p -dyadic local, is the one defined by the first author (2007). We shall investigate the class of A p -dyadic weights in connection with the maximal inequalities. After obtaining the properties of weights in the first half of the present paper, we consider the Haar wavelet on weighted Herz spaces in the latter half. We shall show that the Haar wavelet basis is an unconditional basis. We also show that the Haar wavelet is not greedy except for the trivial case, that is, the Haar wavelet is greedy if and only if the Herz space under consideration is a weighted L p space.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.