Abstract

Regulated expression of the H19 long noncoding RNA gene has been well characterized as a paradigm for genomic imprinting, but the H19 RNA's biological function remains largely unclear. H19 is abundantly expressed maternally in embryonic tissues but is strongly repressed after birth, and significant transcription persists only in skeletal muscle. Thus, we examined the role of the H19 RNA in skeletal muscle differentiation and regeneration. Knockdown of H19 RNA in myoblast cells and H19 knockout mouse satellite cells decreases differentiation. H19 exon1 encodes two conserved microRNAs, miR-675-3p and miR-675-5p, both of which are induced during skeletal muscle differentiation. The inhibition of myogenesis by H19 depletion during myoblast differentiation is rescued by exogenous expression of miR-675-3p and miR-675-5p. H19-deficient mice display abnormal skeletal muscle regeneration after injury, which is rectified by reintroduction of miR-675-3p and miR-675-5p. miR-675-3p and miR-675-5p function by directly targeting and down-regulating the anti-differentiation Smad transcription factors critical for the bone morphogenetic protein (BMP) pathway and the DNA replication initiation factor Cdc6. Therefore, the H19 long noncoding RNA has a critical trans-regulatory function in skeletal muscle differentiation and regeneration that is mediated by the microRNAs encoded within H19.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.