Abstract

Context. This paper presents the analysis of optical integral field spectra for the H I eXtreme (H IX) galaxy sample. H IX galaxies host at least 2.5 times more atomic gas (H I) than expected from their optical R-band luminosity. Previous examination of their star formation activity and H I kinematics suggested that these galaxies stabilise their large H I discs (radii up to 94 kpc) against star formation due to their higher than average baryonic specific angular momentum. A comparison to semi-analytic models further showed that the elevated baryonic specific angular momentum is inherited from the high spin of the dark matter host. Aims. In this paper we now turn to the gas-phase metallicity as well as stellar and ionised gas kinematics in H IX galaxies to gain insights into recent accretion of metal-poor gas or recent mergers. Methods. We compare the stellar, ionised, and atomic gas kinematics, and examine the variation in the gas-phase metallicity throughout the stellar disc of H IX galaxies. Results. We find no indication for counter-rotation in any of the components, the central metallicities tend to be lower than average, but as low as expected for galaxies of similar H I mass. Metallicity gradients are comparable to other less H I-rich, local star forming galaxies. Conclusions. We conclude that H IX galaxies show no conclusive evidence for recent major accretion or merger events. Their overall lower metallicities are likely due to being hosted by high spin halos, which slows down their evolution and thus the enrichment of their interstellar medium.

Highlights

  • The study of outliers to scaling relations may inform of the physical processes that underlay the scaling relation

  • H I-excess systems differ from other H I-rich galaxies as they were selected for being H I-rich for Tables of the values used in Figs. 5 and 6 are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/635/ A69

  • We found that H I eXtreme (H IX) galaxies maintain their H I reservoir by retaining large amounts of H I outside the stellar disc

Read more

Summary

Introduction

The study of outliers to scaling relations may inform of the physical processes that underlay the scaling relation. This relation connects the stellar mass of a galaxy to the central gas-phase metallicity (Tremonti et al 2004).

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.