Abstract

BackgroundNeonicotinoid insecticides are applied worldwide for the control of agricultural insect pests. The evolution of neonicotinoid resistance has led to the failure of pest control in the field. The enhanced detoxifying enzyme activity and target mutations play important roles in the resistance of insects to neonicotinoid resistance. Emerging evidence indicates a central role of the gut symbiont in insect pest resistance to pesticides. Existing reports suggest that symbiotic microorganisms could mediate pesticide resistance by degrading pesticides in insect pests.ResultsThe 16S rDNA sequencing results showed that the richness and diversity of the gut community between the imidacloprid-resistant (IMI-R) and imidacloprid-susceptible (IMI-S) strains of the cotton aphid Aphis gossypii showed no significant difference, while the abundance of the gut symbiont Sphingomonas was significantly higher in the IMI-R strain. Antibiotic treatment deprived Sphingomonas of the gut, followed by an increase in susceptibility to imidacloprid in the IMI-R strain. The susceptibility of the IMI-S strain to imidacloprid was significantly decreased as expected after supplementation with Sphingomonas. In addition, the imidacloprid susceptibility in nine field populations, which were all infected with Sphingomonas, increased to different degrees after treatment with antibiotics. Then, we demonstrated that Sphingomonas isolated from the gut of the IMI-R strain could subsist only with imidacloprid as a carbon source. The metabolic efficiency of imidacloprid by Sphingomonas reached 56% by HPLC detection. This further proved that Sphingomonas could mediate A. gossypii resistance to imidacloprid by hydroxylation and nitroreduction.ConclusionsOur findings suggest that the gut symbiont Sphingomonas, with detoxification properties, could offer an opportunity for insect pests to metabolize imidacloprid. These findings enriched our knowledge of mechanisms of insecticide resistance and provided new symbiont-based strategies for control of insecticide-resistant insect pests with high Sphingomonas abundance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call