Abstract

Atoms doping is a practical approach to modulate the physicochemical properties of carbon dots (CDs) and thus has garnered increasing attention in recent years. Compared to non-metal atoms, transition metal atoms (TMAs) possess more unoccupied orbitals and larger atomic radii. TMAs doping can significantly alter the electronic structure of CDs and bestow them with new intrinsic characteristics. TMAs-doped CDs have exhibited widespread application potential as a new class of single-atom-based nanomaterials. However, challenges remain for the successful preparation and precise design of TMAs-doped CDs. The key to successfully preparing TMA-doped CDs lies in anchoring TMAs to the carbon precursors before the reaction. Herein, taking the formation mechanism of TMAs-doped CDs as a starting point, we systematically summarized the ligands employed for synthesizing TMAs-doped CDs and proposed the synthetic strategy involving multiple ligands. Additionally, we summarize the functional properties imparted to CDs by different TMA dopants to guide the design of TMA-doped CDs with different functional characteristics. Finally, we describe the bottlenecks TMAs-doped CDs face and provide an outlook on their future development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call