Abstract

For any simply connected polygon in the plane, the number of billiard orbits which begin and end at a vertex grows subexponentially with respect to the length or to the number of reflections. This implies that the numbers of isolated periodic orbits and of families of parallel periodic orbits do grow subexponentially. The main technical device is a calculation showing that the topological entropy of the Poincare map for the billiard flow is equal to zero.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.