Abstract

A new rescaling of the vorticity moments and their growth terms is used to characterise the evolution of anti-parallel vortices governed by the 3D Euler equations. To suppress unphysical instabilities, the initial condition uses a balanced profile for the initial magnitude of vorticity along with a new algorithm for the initial vorticity direction. The new analysis uses a new adaptation to the Euler equations of a rescaling of the vorticity moments developed for Navier-Stokes analysis. All rescaled moments grow in time, with the lower-order moments bounding the higher-order moments from above, consistent with new results from several Navier-Stokes calculations. Furthermore, if, as an inviscid flow evolves, this ordering is assumed to hold, then a singular upper bound on the growth of these moments can be used to provide a prediction of power law growth to compare against. There is a significant period where the growth of the highest moments converges to these singular bounds, demonstrating a tie between the strongest nonlinear growth and how the rescaled vorticity moments are ordered. The logarithmic growth of all the moments are calculated directly and the estimated singular times for the different Dm converge to a common value for the simulation in the best domain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.