Abstract

The role of xyloglucan endotransglycosylases in the regulation and promotion of plant growth in response to such widespread stress factors as drought, salinization, and hypothermia remains poorly understood. The tXET-B2 (SlXTH10) gene encodes one of the xyloglucan endotransglycosylases of tomato, which is most closely related in the nucleotide sequence to the AtXTH15 and AtXTH16 genes of Arabidopsis thaliana. At present, the specific functions of the tXET-B2 gene, as well as of its homologs, AtXTH15 and AtXTH16, remain obscure. To study the role of tXET-B2 in the regulation of growth and adaptation to abiotic stress factors, transgenic tobacco plants with estradiol-inducible expression of the tomato tXET-B2 gene were generated. Overexpression of this gene promoted tobacco root growth in a medium containing 50 mM NaCl. Under drought conditions, exogenous treatment with estradiol resulted in a considerable increase in fresh and dry weight in many of the studied transgenic lines. Under normal conditions, as well as under salinization and hypothermia stress, such positive effect was detected only for some transgenic lines. The obtained data point to the possibility of using genetically engineered constructs of the tXET-B2 gene to correct growth parameters of transgenic plants under the influence of stress factors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call