Abstract

Light and auxin antagonistically regulate hypocotyl elongation. We have investigated the physiological interactions of light and auxin in the control of tomato ( Lycopersicon esculentum Mill.) hypocotyl elongation by studying the auxin-insensitive mutant diageotropica ( dgt). The length of the hypocotyls of the dgt mutant is significantly reduced when compared to the wild type line Ailsa Craig (AC) in the dark and under red light, but not under the other light conditions tested, indicating that auxin sensitivity is involved in the elongation of hypocotyls only in these conditions. Similarly, the auxin transport inhibitor naphtylphtalamic acid (NPA) differentially affects elongation of dark- or light-grown hypocotyls of the MoneyMaker (MM) tomato wild type. Using different photomorphogenic mutants, we demonstrate that at least phytochrome A, phytochrome B1 and, to a much lesser extend, cryptochrome 1, are necessary for a switch from an auxin transport-dependent elongation of hypocotyls in the dark to an auxin transport-independent elongation in the light. Interestingly, the dgt mutant and NPA-treated seedlings exhibit a looped phenotype only under red light, indicating that the negative gravitropism of hypocotyls also differentially involves auxin in the various light conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.