Abstract

Lanthanum-doped bismuth titanate (BLT) thin films were grown on buffered Si substrates using a RF magnetron sputtering system. Electrically conducting ZnO layers were used as an effective buffer layer to facilitate the growth of the ferroelectric thin films. X-ray diffraction data shows the Aurivilius phase structure with the highest diffraction peak (117), indicating non-c-axis-oriented microstructure. Random oriented plate-like grains were observed using scanning electron microscopy. The ferroelectric nature of the film was proved by ferroelectric domain switching under an electrical field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call