Abstract

AbstractRaman spectroscopy can be performed with micrometer resolution and can thus be used to determine the dependence of oxide thickness on the substrate’s grain structure or local impurity inclusions. The Raman signal amplitude emitted from an epitaxial uranium oxide layer as a function of oxide thickness has been modeled for light of 632.8 nm wavelength incident on the oxide and reflected from the uranium substrate using the optical properties determined by spectrophotometry. The model shows that the Raman signal increases with oxide thickness and saturates at about 150 nm thickness. The model was compared with the measured Raman signal amplitude of an epitaxial uranium oxide layer growing in air with a known time dependence of oxide growth.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call