Abstract

The growth rate of disk abalone, Haliotis discus hannai, energy consumption and changes in water quality were monitored in a pilot-scale recirculating aquaculture system (RAS) for 155 days. Baffles were installed in the RAS culture tanks to enlarge the attachment area and clean out solid waste materials automatically by hydraulic force only. The experimental disk abalones, of shell length 24.5 ± 0.5 mm, were cultured at three stocking densities, 700, 1300 and 1910 individuals/m 2 bottom area, in triplicate. The abalones were fed with sea mustard, Undaria pinnatifida, once a week. The abalone feed conversion rates and daily growth rates ranged from 24.5 to 25.9 and 0.32 to 0.36%, respectively. Their daily shell increments and survival rates ranged from 67.7 to 78.6 μm/day and 87.6–92.2%, respectively. The growth in weight tended to decrease at a culture density of 1300 individuals/m 2 bottom area, while shell increments and survival rates were acceptable at this density. The total power consumption for heating was 1185.4 kW, comprising 30.2% of the total power consumption, while the average water exchange rate was only 2.9% per day. The total ammonia nitrogen stabilized below 0.07 mg/L, after conditioning of the biofilter. The NO 2 −–N, NO 3 −–N and total suspended solid concentrations were also maintained within acceptable ranges for the normal growth of disk abalone. The use of the RAS with these newly designed culture tanks for disk abalone culture produced 1300 individuals/m 2 bottom area with a water exchange rate of only 2.9% per day and used about one-tenth of the heat energy of a conventional flow-through system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call