Abstract

The layer-by-layer liquid-phase epitaxy (LBL-LPE) method is widely used in preparing metal-organic framework (MOF) thin films with the merits of controlling thickness and out-of-plane orientation for superior performances in applications. The LBL-LPE growth mechanism related to the grain boundary, structure defect, and orientation is critical but very challenging to study. In this work, a novel "in-plane self-limiting and self-repairing" thin-film growth mechanism is demonstrated by the combination study of the grain boundary, structure defect, and orientation of Cu3 (HHTP)2 -xC thin film via microscopic analysis techniques and electrical measurements. This mechanism results a desired high-quality MOF thin film with preferred in-plane orientations at its bottom for the first time and is very helpful for optimizing the LBL-LPE method, understanding the growth cycle-dependent properties of MOF thin film, and inspiring the investigations of the biomimetic self-repairing materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.