Abstract

The melting properties of Sn-3.5Ag, Sn-3.5Ag-0.7Cu, Sn-3.5Ag-1.7Cu and Sn-0.5Ag-4Cu lead-free solder alloys and the growth behavior of the intermetallic compound (IMC) layer of these solders on a Cu substrate during soldering are investigated. The results indicate that the melting points of Sn-3.5Ag, Sn-3.5Ag-0.7Cu and Sn-3.5Ag-1.7Cu solders are quite similar with one eutectic peak, while Sn-0.5Ag-4Cu solder has two endothermal peaks according to /spl beta/ | Cu/sub 6/Sn/sub 5/ + Ag/sub 3/Sn /spl rarr/ L and /spl beta/ + Cu/sub 6/Sn/sub 5/ /spl rarr/ L reactions, respectively. With the increasing Cu content in Sn-3.5Ag, Sn-3.5Ag-0.7Cu and Sn-3.5Ag-1.7Cu solders, the IMC thickness decreases due to the decrease of the dissolution rate of the IMC. The IMC thickness of Sn-0.5Ag-4Cu is quite thin when the soldering time is short. However, with increasing soldering time, the thickness turns thick very soon, which is led by the precipitation effect of the Cu/sub 6/Sn/sub 5/ in the liquid solder.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.