Abstract

We have conducted three-dimensional self-gravitating radiation hydrodynamical models of gas accretion onto high mass cores (15-33 Earth masses) over hundreds of orbits. Of these models, one case accretes more than a third of a Jupiter mass of gas, before eventually undergoing a hydrodynamic collapse. This collapse causes the density near the core to increase by more than an order of magnitude, and the outer envelope to evolve into a circumplanetary disc. A small reduction in the mass within the Hill radius (R_H) accompanies this collapse as a shock propagates outwards. This collapse leads to a new hydrostatic equilibrium for the protoplanetary envelope, at which point 97 per cent of the mass contained within the Hill radius is within the inner 0.03 R_H which had previously contained less than 40 per cent. Following this collapse the protoplanet resumes accretion at its prior rate. The net flow of mass towards this dense protoplanet is predominantly from high latitudes, whilst at the outer edge of the circumplanetary disc there is net outflow of gas along the midplane. We also find a turnover of gas deep within the bound envelope that may be caused by the establishment of convection cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.