Abstract

The growth of CdTe buffer layers on (211)B GaAs substrates by organometallic vapor phase epitaxy (OMVPE) was studied, and it was found that, depending on the growth conditions, either the (211) or (133) epitaxial orientation could be formed. In some cases, an epilayer showing a mixed (211) and (133) orientation was also observed. The influence of several growth parameters on the orientation of the CdTe layer was investigated, and it was found that the Te/Cd ratio, together with the growth temperature, have the most significant effect in determining the epilayer orientation. From these results, it was then possible to select nominally optimized growth conditions for CdTe buffer layers of both orientations. (Hg,Cd)Te layers of the same orientations could then be grown and characterized. Although double crystal x-ray diffraction measurements indicated a somewhat better crystalline perfection in the (133) (Hg,Cd)Te layers, these layers showed a poor surface morphology compared to the (211) orientation. Measurement of etch pit densities also indicated defect densities to be typically half an order of magnitude higher in the (133) orientation. Diodes were formed by ion implantation in both orientations and significantly better results were obtained on the (211) (Hg,Cd)Te layers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call