Abstract

The growth and breakdown of counter-rotating streamwise vortices, generated on a concave wall via the Goertler instability mechanism, were experimentally studied as a model for comparable eddy structures that exist in transitional and turbulent flat-plate boundary layers. The experiments were conducted in a low-speed open-return wind tunnel, using smoke-wire visualization and multiple-probe hot wires to study the vortices. As low-momentum fluid was removed from the wall, low-speed regions formed between the vortices; these regions grew in the normal direction faster than a nominally Blasius boundary layer and created strongly inflexional normal and spanwise profiles of the streamwise velocity component. Instability oscillations developed on these unstable profiles that scaled with the local shear-layer thickness and velocity difference. The spatial scales of the temporal velocity fluctuations were found to correlate with the velocity gradient in the spanwise (rather than in the normal) direction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call