Abstract
For a complete Cartan foliation (M,F) we introduce two algebraic invariants g0(M,F) and g1(M,F) which we call structure Lie algebras. If the transverse Cartan geometry of (M,F) is effective then g0(M,F) = g1(M,F). Weprove that if g0(M,F) is zero then in the category of Cartan foliations the group of all basic automorphisms of the foliation (M,F) admits a unique structure of a finite-dimensional Lie group. In particular, we obtain sufficient conditions for this group to be discrete. We give some exact (i.e. best possible) estimates of the dimension of this group depending on the transverse geometry and topology of leaves. We construct several examples of groups of all basic automorphisms of complete Cartan foliations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.