Abstract

The problem of the ground state of the electronic system in the Hubbard model for U=∞ is discussed. The author investigates the normal (singlet or nonmagnetic) N state of the electronic system over the entire range of electron densities n⩽1. It is shown that the energy of the N state ɛ0(1)(n) in a one-particle approximation, such as (e.g.) the extended Hartree-Fock approximation, is lower than the energy of the saturated ferromagnetic FM state ɛFM(n) for all n. The dynamic magnetic susceptibility is calculated in the random phase approximation, and it is shown that the N state is stable over the entire range of electron densities: The static susceptibility (ω=0) does not have a band singularity in the zero-wave vector limit q→0. A formally exact representation is obtained for the mass operator of the one-particle Green’s function, and an approximation of this operator is proposed: Mk(E)⋍λF(E), where λ=n(1−n)/(1−n/2)z is the kinematic interaction parameter, z is the number of nearest neighbors, and F(E) is the total single-site Green’s function. For an elliptical density of states the integral equation for F(E) is solved exactly, ad it is shown that the spectral intensity rigorously satisfies the sum rule. The calculated energy of the strongly correlated N state ɛ0(n)<ɛFM(n) for all n, and in light of this relationship the author discusses the hypothesis that the ground state of the system is the normal (singlet) state in the thermodynamic limit. The electron distribution function at T=0 differs significantly from the Fermi step; it is “smeared” along the entire energy spectrum, and discontinuities do not occur in the region of the chemical potential m.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.