Abstract

Results are presented from a new theoretical study of the ground state potential curve of the chromium dimer using multiconfiguration second-order perturbation theory. A new basis set of the atomic natural orbital type is used where the construction includes correlation of the semi-core 3p orbitals and scalar relativistic effects are added using the Douglas-Kroll Hamiltonian. The active space used in the CASSCF/CASPT2 calculations comprised 16 orbitals with 12 active electrons. The resulting ground state potential is in agreement with experiment. Computed spectroscopic constants are (with experimental values within parentheses): Re = 1.66 (1.68) Å, D0 = 1.65 (1.53 ± 0.06) eV, ∆G1/2 = 413 (452) cm-1. Higher vibrational frequencies are also well reproduced.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.