Abstract
The ground state of semiconductor quantum rings (QRs) in the presence of an external magnetic field B is theoretically analyzed. By numerically diagonalizing the effective-mass Hamiltonian of the QRs, the energy and wavefunction of the ground state are obtained. It is found that the energy oscillates as B increases. The evolution of the angular momentum L0 and the spin S0 of the ground state in accord with B is revealed. We depict the geometric configuration of the ground state via density functions. Based on an analysis of the wavefunction, it is shown that each configuration is accessible only to a specific group of states having specific L0 and S0.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.