Abstract

Awarding CO2 offset credits may incentivize seagrass restoration projects and help reverse greenhouse gas (GHG) emissions from global seagrass loss. However, no study has quantified net GHG removal from the atmosphere from a seagrass restoration project, which would require coupled Corg stock and GHG flux enhancement measurements, or determined whether the creditable offset benefit can finance the restoration. We measured all of the necessary GHG accounting parameters in the 7-km2Zostera marina (eelgrass) meadow in Virginia, U.S.A., part of the largest, most cost-effective meadow restoration to date, to provide the first seagrass offset finance test-of-concept. Restoring seagrass removed 9,600 tCO2 from the atmosphere over 15 years but also enhanced both CH4 and N2O production, releasing 950 tCO2e. Despite tripling the N2O flux to 0.06 g m−2 yr−1 and increasing CH4 8-fold to 0.8 g m−2 yr−1, the meadow now offsets 0.42 tCO2e ha−1 yr−1, which is roughly equivalent to the seagrass sequestration rate for GHG inventory accounting but lower than the rates for temperate and tropical forests. The financial benefit for this highly successful project, $87 K at $10 MtCO2e−1, defrays ~10% of the restoration cost. Managers should also consider seagrass co-benefits, which provide additional incentives for seagrass restoration.

Highlights

  • Awarding CO2 offset credits may incentivize seagrass restoration projects and help reverse greenhouse gas (GHG) emissions from global seagrass loss

  • Corg stock enhancement at the meadow scale resulting from increasing Corg concentrations within the bed, seagrass-enhanced bed accretion, and meadow expansion

  • We found that seagrass presence increased both CH4 and N2O release, but these increases had a relatively small effect on the net GHG benefit

Read more

Summary

Introduction

Awarding CO2 offset credits may incentivize seagrass restoration projects and help reverse greenhouse gas (GHG) emissions from global seagrass loss. No study has quantified net GHG removal from the atmosphere from a seagrass restoration project, which would require coupled Corg stock and GHG flux enhancement measurements, or determined whether the creditable offset benefit can finance the restoration. The framework has been used by countries seeking to incorporate seagrass meadows into national GHG inventories but not by individual projects Under this methodology, the certifiable GHG offset benefit only corresponds to the net CO2 (or CO2 equivalent GHG: CO2e) removal from the atmosphere that can be directly attributed to a restoration project in a recognized carbon pool (i.e., negative emissions over time), minus any GHG emission increases. The net GHG benefit equals CO2 sequestrated as enhanced sediment Corg (see Fig. 1: gross meadow sediment stock minus an equivalent area bare sediment stock) and the long-term average

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.