Abstract
We prove the first ever pointwise estimates of the (unrestricted) Green tensor and the associated pressure tensor of the nonstationary Stokes system in the half-space, for every space dimension greater than one. The force field is not necessarily assumed to be solenoidal. The key is to find a suitable Green tensor formula which maximizes the tangential decay, showing in particular the integrability of Green tensor derivatives. With its pointwise estimates, we show the symmetry of the Green tensor, which in turn improves pointwise estimates. We also study how the solutions converge to the initial data, and the (infinitely many) restricted Green tensors acting on solenoidal vector fields. As applications, we give new proofs of existence of mild solutions of the Navier–Stokes equations in $$L^q$$ , pointwise decay, and uniformly local $$L^q$$ spaces in the half-space.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.