Abstract

Epigallocatechin-3-gallate (EGCG) is the main polyphenolic flavonoid found in green tea. Recent in vitro studies have suggested that EGCG inhibits activation of the nuclear factor-kappaB (NF-kappaB) pathway. The NF-kappaB is a transcriptional factor required for gene expression of many inflammatory mediators, including the inducible isoform of nitric oxide synthase (NOS2). Excessive NO production by NOS2 is directly linked to the vasoplegia, shock, and mortality associated with sepsis. Accordingly, we hypothesized that EGCG administration would inhibit NOS2 gene expression and thereby improve survival in a rodent model of polymicrobial sepsis. Polymicrobial sepsis was induced in male Sprague-Dawley rats (hemodynamic study) and C57BL6 mice (mortality study) via cecal ligation and double puncture (CL2P). Rodents were treated with either EGCG (10 mg/kg intraperitoneally) or vehicle at 1 and 6 h after CL2P and every 12 h thereafter. In the hemodynamic study, mean arterial blood pressure was monitored for 18 h, and rats were killed at 3, 6, and 18 h after CL2P. In the mortality study, survival was monitored for 72 h after CL2P in mice. In vehicle-treated rodents, CL2P was associated with profound hypotension and greater than 80% mortality rate. Epigallocatechin-3-gallate treatment significantly improved both the hypotension and survival. In vitro experiments further showed that EGCG inhibited activation of NF-kappaB and subsequent NOS2 gene expression in a primary culture of rat aortic smooth muscle cells. Epigallocatechin-3-gallate may therefore represent a potential nutritional supplement or pharmacologic agent in patients with sepsis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.