Abstract
We construct the fundamental solution or Green function for a divergence form elliptic system in two dimensions with bounded and measurable coefficients. Our main goal is construct the Green function for the operator with mixed boundary conditions in a Lipschitz domain. Thus we specify Dirichlet data on part of the boundary and Neumann data on the remainder of the boundary. We require a corkscrew or non-tangential accessibility condition on the set where we specify Dirichlet boundary conditions. Our proof proceeds by defining a variant of the space BMO(Ω) that is adapted to the boundary conditions and showing that the solution exists in this space. We also give a construction of the Green function with Neumann boundary conditions and the fundamental solution in the plane.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.